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Abstract
We revisit the work of Dhar and Majumdar (1999 Phys. Rev. E 59 6413) on
the limiting distribution of the temporal mean Mt = t−1

∫ t

0 du sign yu, for a
Gaussian Markovian process yt depending on a parameter α, which can be
interpreted as Brownian motion in the time scale t ′ = t2α . This quantity, the
mean ‘magnetization’, is simply related to the occupation time of the process,
that is the length of time spent on one side of the origin up to time t . Using
the fact that the intervals between sign changes of the process form a renewal
process on the time scale t ′, we determine recursively the moments of the mean
magnetization. We also find an integral equation for the distribution ofMt . This
allows a local analysis of this distribution in the persistence region (Mt → ±1),
as well as its asymptotic analysis in the regime where α is large. Finally, we put
the results thus found in perspective with those obtained by Dhar and Majumdar
by another method, based on a formalism due to Kac.

PACS numbers: 0250E, 0250G, 0540

1. Introduction

Consider the stochastic process yt defined by the Langevin equation

dyt
dt

=
√

2α tα−1/2ηt (1.1)

where α is a positive parameter, and ηt is a Gaussian white noise such that 〈ηt 〉 = 0 and〈
ηt1ηt2

〉 = δ(t2 − t1). In the new time scale

t ′ = t2α

this process satisfies the usual Langevin equation for one-dimensional Brownian motion,

dyt ′

dt ′
= ζt ′
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where ζt ′ is still a Gaussian white noise, with 〈ζt ′ 〉 = 0 and
〈
ζt ′1ζt

′
2

〉 = δ(t ′2 − t ′1). The process
defined by (1.1) is a simple example of subordinated Brownian motion [1]. As for Brownian
motion itself, it is Gaussian, Markovian and non-stationary.

This process appears in various situations of physical interest. For instance, it is described
in [2] as a Markovian approximation to fractional Brownian motion. It also appears in [3] for
the special case α = 1

4 , as describing the time evolution of the total magnetization of a Glauber
chain undergoing phase ordering.

Dhar and Majumdar [4] raised the question of computing the distribution of the occupation
time of this process, that is the length of time spent by the process on one side of the origin up
to time t ,

T ±
t =

∫ t

0
du

1 ± σu

2
(1.2)

where σt = sign yt , or equivalently of

Mt = 1

t

∫ t

0
du σu (1.3)

where Mt , the temporal mean of σt , is hereafter referred to as the ‘mean magnetization’ by
analogy with physical situations where σt represents a spin. The distribution of the occupation
time bears information on the statistics of persistent events of the process beyond that contained
in the persistence exponent [5–11]. This exponent governs the decay ∼ t−θ of the survival
probability of the process, that is the probability that the process did not cross the origin up
to time t . Actually, for the present case, the determination of θ is trivial, as shown by simple
reasoning [4]: the probability for the Brownian process yt ′ not to change sign up to time t ′ is
known to decay as (t ′)−1/2, hence for the original process it decays as t−α . This shows that
θ = α.

When α = 1
2 , the distribution of the fraction of time spent on one side of the origin by a

random walker, or by Brownian motion, is given, in the long-time regime, by the arcsine law
[1, 12]. In contrast, when α 
= 1

2 , the explicit determination of this distribution, or equivalently
of the distribution of Mt , seems very difficult. However, as shown in [4], in the long-time
regime, the computation of the asymptotic moments

〈
Mk

t

〉
can be done recursively, using two

different methods, yielding the same results. The first method relies on a formalism due to
Kac [13], while the second one originates from [5].

The method used in [5] can be applied to any (smooth) process for which the intervals
of time between sign changes are independent, when taken on a logarithmic scale, with finite
(i.e. non-zero) mean �̄. It eventually leads to a recursive determination of the moments of Mt ,
as t → ∞ (see equation (3.9) below).

Dhar and Majumdar make the observation that, since relations (3.9) are independent of �̄,
they can be applied to the determination of the moments ofMt for the process (1.1). Comparing
the resulting expressions of the moments thus obtained to those derived by their alternative
method shows that this is indeed the case.

However, it is not obvious to understand why relations (3.9) hold for the (non-smooth)
process (1.1), since the assumptions made in order to derive them do not hold for such a process.
In particular, while, for the class of models with independent time intervals on a logarithmic
scale, and finite �̄ (for which the method of [5] has been devised), it is natural to work in
a logarithmic time scale, since the mean number of sign changes between 0 and t scales as
〈Nt 〉 ≈ (ln t)/�̄, this is not so in the present case, since �̄ vanishes asymptotically, and the
mean number of sign changes scales as 〈Nt 〉 ≈ 2π−1/2tα [11]. The validity of relations (3.9)
for the process (1.1) therefore requires an explanation.



Statistics of the occupation time for a class of Gaussian Markov processes 1249

In this paper, we revisit and extend the study done in [4].
We first give a new derivation of the asymptotic expressions of the moments

〈
Mk

t

〉
. We start

from the same premise as in [5], and then follow another route—more adapted to the process
under study—because of the difficulties encountered in applying the step-by-step method
of [5] to the present case (sections 2-5). We then identify the symmetry properties of the
distributions of the random variables that appear in the computations, and derive a functional
integral equation, the solution of which yields the distribution ofMt (section 6). This approach
is first checked on the case α = 1

2 (section 7). It is then successively applied to the study of
the local behaviour of this distribution in the persistence region, for general α (section 8), and
to the large-α regime (section 9).

We finally discuss some aspects of [4]. We explain why a formal application of the method
of [5] to the present case is only heuristic, and give a new interpretation of the results obtained
in [4] with the method of Kac, in light of the present work (section 10).

2. Observables of interest

Changes of sign of the process yt (or zero crossings) occur at discrete instants of time
t1, t2, . . . , tn, . . . , once the process is suitably regularized at short times. We assume that
the process starts at the origin, so that t0 = 0 is also a sign change. Let Nt be the number of
sign changes which occurred between 0 and t , i.e. Nt is the random variable for the largest n
for which tn � t .

In the scale t ′, where the process is (regularized) Brownian motion, sign changes occur
at the instants of time3 t ′n = (tn)

2α , and Nt ′ ≡ Nt is the random variable for the largest n for
which t ′n � t ′. The intervals of time between sign changes are denoted by τ ′

n = t ′n − t ′n−1.
These are independent, identically distributed random variables, with a probability density
function ρ(τ ′). For large values of τ ′, ρ(τ ′) decays proportionally to (τ ′)−3/2. This behaviour
is independent of the regularizing procedure, while its prefactor just reflects the choice of time
units. The density ρ(τ ′) is therefore in the basin of attraction of a Lévy law of index 1

2 . We
choose units so that we have in Laplace space

L
τ ′
ρ(τ ′) = ρ̂(s) = 〈

e−sτ ′ 〉 ≈
s→0

1 − √
s. (2.1)

The process formed by the independent intervals of time τ ′
1, τ

′
2, . . . , is known as a renewal

process. In the original scale t , the intervals of time τn = tn − tn−1 are not independent.
We denote by tN the instant of the last change of sign of the process before time t . This

random variable depends implicitly on time t through Nt . In the scale t ′, we have t ′N = (tN )
2α .

The occupation times T +
t and T −

t (see equation (1.2)) are the lengths of time spent by the
sign process σt in the + and − states, respectively, up to time t , hence t = T +

t + T −
t . They are

simply related to the mean magnetization (1.3) by

tMt = T +
t − T −

t = 2T +
t − t = t − 2T −

t .

Assume that yt > 0 at t = 0+, i.e. σt=0 = +1. Then

tMt =
{ −(t − tN ) + (tN − tN−1) − · · · if Nt = 2k + 1 (i.e. σt = −1)

(t − tN ) − (tN − tN−1) + · · · if Nt = 2k (i.e. σt = +1).

The converse holds if σt=0 = −1. Hence we have, with equal probabilities,

Mt = ±(1 − 2ξt ) (2.2)

3 Hereafter we denote by a prime any temporal variable in this scale.
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where

ξt = 1

t
(tN − tN−1 + · · ·)

is the fraction of time spent in the state + if σt = −1, and conversely. The latter formula can
be rewritten as

ξt = tN

t
XN (2.3)

where the XN obey the recursion

XN = 1 − tN−1

tN
XN−1 (2.4)

with X1 = 1. Both random variables XN and tN−1/tN depend implicitly on time t through Nt .
For instance, if σt=0 = +1 and Nt = 4, then

Mt = 1

t

(
(t − t4) − (t4 − t3) + (t3 − t2) − (t2 − t1) + t1

)
= 1 − 2ξt

where ξt = (t4 − t3 + t2 − t1)/t = t4X4/t , with

X4 = 1 − t3

t4

(
1 − t2

t3

(
1 − t1

t2

))
.

3. Methods of solution

Equations (2.2)–(2.4) contain in essence the solution to the problem posed, namely the
determination of the limiting distribution of the mean magnetization Mt for t → ∞.
Unfortunately, no explicit solution can be attained in general.

However, from (2.2)–(2.4), one can obtain recursively the moments ofMt , in the long-time
limit. This can be done either along the lines of [5], as done in [4], or by the method of this
paper. In this section, we explain the difficulty encountered when applying the method of [5]
to the process (1.1), in order to justify the more lengthy path we have adopted for the derivation
of the moments. We shall return to the comparison between the two methods in section 10.

3.1. General framework

Assume that, in the long-time regime, the dimensionless random variables tN/t , tN−1/tN , XN ,
ξt , and Mt possess a limiting joint distribution. Define

H = lim
t→∞

tN

t
F = lim

t→∞
tN−1

tN

X = lim
t→∞XN ξ = lim

t→∞ ξt M = lim
t→∞Mt.

Then the equations to be solved are:

X = 1 − FX (3.1)

ξ = HX (3.2)

M = ±(1 − 2ξ). (3.3)

These equalities hold in distribution, and the random variables entering them are not
independent a priori. Equation (3.1) is to be understood as the fixed-point equation
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corresponding to the recursion (2.4), while (3.2) and (3.3) correspond to (2.3) and (2.2),
respectively.

Assume that the distribution of the random variable F is given, and that F is independent
of X. Even so, solving (3.1) is difficult in general [14–17]. However, obtaining the moments
of X recursively is easier. If, furthermore, H and X are independent and the moments of H
are known, then (3.2) and (3.3) determine the moments of M .

3.2. The diffusion equation: a reminder

Such a situation arises precisely in the example treated in [5]: the process yt is the diffusing
field at a fixed point of space, evolving from random initial conditions, and the so-called
independent-interval approximation is used [18, 19]. In the long-time regime, the process is
stationary in the logarithmic time scale T = ln t . Consequently, the autocorrelation function
of the sign process, A(|�T |) = 〈σT σT +�T 〉, only depends on the difference of logarithmic
times [18, 19].

Consider the intervals of time �N between successive sign changes of the process in the
logarithmic time scale, �N = TN − TN−1, or

e−�N = tN−1

tN
. (3.4)

The independent-interval approximation consists in considering the intervals �N as
independent, and thus defining a renewal process. The distribution of the random variable �N
can then be derived, in Laplace space, from knowledge of the correlation function A(|�T |).
This distribution is found to be independent of time, because the process is stationary in
logarithmic time. Its average, 〈�N 〉 = �̄, is some time-independent positive number. Explicitly,

f̂�N (s) = 〈
e−s�N

〉 = 〈
F s

〉 = 1 − �̄g(s)

1 + �̄g(s)
(3.5)

with

g(s) = 1
2 s

(
1 − sÂ(s)

)
(3.6)

where Â(s) is the Laplace transform of A(T ). In particular, the moments

fk = 〈
Fk

〉 =
〈(

tN−1

tN

)k
〉

= 〈
e−k�N

〉 = f̂�N (k) (3.7)

are independent of time. Thus from (3.1) the moments of X are determined recursively in
terms of the fk (see (A.18)).

In the long-time regime, the distribution of the backward recurrence time of the process in
the logarithmic scale, λ = T − TN , is also independent of time. This logarithmic recurrence
time is related to the random variable H by

e−λ = tN

t
= H.

Its distribution in Laplace space reads

f̂λ(s) = 〈
e−sλ

〉 = 〈
Hs

〉 = 2g(s)

s
(
1 + �̄g(s)

) . (3.8)

The random variables X and H (or λ) are independent. Hence (3.2) and (3.3) determine
the moments ofM . A remarkable fact is that the moments thus obtained, which are functions of
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the fk and of �̄, become independent of �̄when the fk are expressed in terms of the Â(k) ≡ Âk ,
using equations (3.5)–(3.7). Thus [5]

〈M2〉 = Â1

〈M4〉 = 1 −
(
1 − 3Â1 + 4Â2

)(
1 − 3Â3

)
1 − 2Â2

(3.9)

and so on.
More generally, the method used in [5] can be applied to any process for which the intervals

of time between sign changes are independent, when taken on a logarithmic scale. It eventually
leads to a recursive determination of the moments of M , resulting in (3.9).

3.3. The case of the process (1.1)

The situation for the process (1.1) is more difficult because, in the limit t → ∞, tN−1/tN →
F = 1. Hence (3.1) no longer determines X, and furthermore 〈�N 〉 → 0. Now, for the class
of models with independent time intervals �N on a logarithmic scale, and finite (i.e. non-zero)
〈�N 〉 = �̄, for which the method of [5], sketched above, has been devised, the mean number
of sign changes between 0 and t scales as 〈Nt 〉 ≈ (ln t)/�̄. So, in contrast, in the present
case there is no obvious reason to work with this logarithmic time scale, since 〈�N 〉 vanishes
asymptotically, and the mean number of sign changes scales as 〈Nt 〉 ≈ 2π−1/2tα [11].

On the other hand, if time is kept finite, then the time intervals �N are not independent
and the process (1.1) is not stationary, again precluding the application of the method of [5].

A way out of this is to formally apply this method to the process (1.1), without paying
attention to the difficulties mentioned above, and taking advantage of the fact that the moments〈
Mk

〉
, given by (3.9), are independent of �̄, and therefore (hopefully) insensitive to the fact that

〈�N 〉 → 0. This approach, which is the one followed by Dhar and Majumdar [4], is, however,
only heuristic, as discussed further in section 10.

Our approach relies instead on the fact that the time intervals τ ′
n between two sign changes

of the process (1.1) form a renewal process (the τ ′
n are independent, identically distributed

random variables with density ρ(τ ′), given by (2.1) for large τ ′). This is a fundamental
property of the process (1.1), and, in particular, of Brownian motion if α = 1

2 .
This property allows us to determine the limiting distribution fH of H when t → ∞, and

the moments fk,t of the random variable tN−1/tN , which are now time dependent. We also
find the explicit time-dependent expression of 〈�N 〉. Using the original equation (2.4), instead
of (3.1), and equations (3.2) and (3.3), we eventually recover the expressions (3.9) of the

〈
Mk

〉
,

thus extending their range of applicability.
We then establish an integral equation for fX, and study its consequences.

4. Distribution of tN/t

Using the independence of the τ ′
1, τ

′
2, . . . , we first determine the distribution of the random

variable t ′N , from which we then deduce that of tN . The method used below is borrowed from
[11], where a thorough study of the statistics of the occupation time of renewal processes can
be found.

We denote by ft ′N ,N the joint probability density of the random variables t ′N and Nt . It
reads

ft ′N ,N (t
′; y, n) = d

dy
P (

t ′N < y,Nt ′ = n
)

= 〈
δ(y − t ′N)I (t

′
n < t ′ < t ′n+1)

〉
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where I (t ′n < t ′ < t ′n+1) = 1 if the event inside the parentheses occurs, and 0 if not. The
brackets denote the average over τ ′

1, τ
′
2, . . . . Summing over n gives the distribution of t ′N ,

ft ′N (t
′; y) =

∞∑
n=0

ft ′N ,N (t
′; y, n) = 〈

δ(y − t ′N)
〉
.

In Laplace space, where s is conjugate to t ′ and u to y,

L
t ′,y

ft ′N ,N (t
′; y, n) = f̂t ′N ,N (s; u, n) =

〈
e−ut ′n

∫ t ′n+1

t ′n
dt ′e−st ′

〉

=
〈

e−ut ′ne−st ′n
1 − e−sτ ′

n+1

s

〉

= ρ̂(s + u)n
1 − ρ̂(s)

s
(n � 0). (4.1)

Note that setting u = 0 in (4.1) gives the distribution of Nt ′ . We finally obtain

L
t ′,y

ft ′N (t
′; y) =L

t ′

〈
e−ut ′N

〉 = f̂t ′N (s; u)

=
∞∑
n=0

f̂t ′N ,N (s; u, n) = 1

1 − ρ̂(s + u)

1 − ρ̂(s)

s
.

In the long-time regime, i.e. for s and u simultaneously small, we obtain the scaling form

f̂t ′N (s; u) ≈ 1√
s(s + u)

which yields

ft ′N (t
′; y) ≈

t ′→∞
1

π
√
y(t ′ − y)

.

Consequently, the random variable H ′ = limt ′→∞ t ′−1t ′N possesses the limiting distribution

fH ′(x) = 1

π
√
x(1 − x)

(4.2)

which is the arcsine law on [0, 1].
Using the equality tN/t = (

t ′N/t
′)1/2α

, this last result yields immediately the distribution
of

H = lim
t→∞ tN/t = (H ′)1/2α

which reads

fH (x) = 2αxα−1

π
√

1 − x2α
= 2α

πx
√
x−2α − 1

. (4.3)

This is the main result of this section. Let us define

h(s, α) = 〈
Hs

〉 = 1

π
B

(
s

2α
+

1

2
,

1

2

)
= 1√

π

(
(

s
2α + 1

2

)
(

(
s

2α + 1
) (4.4)

whereB(a, b) = ((a)((b)/((a+b) is the beta function. For integer values of s, equation (4.4)
gives the moments of fH , denoted by

h
(α)
k = h(k, α) = 〈

Hk
〉
.
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In the particular case α = 1
2 , corresponding to Brownian motion, the distribution of

H ≡ H ′ is the arcsine law (4.2), with moments

h
(1/2)
k = 1

π
B

(
k + 1

2 ,
1
2

) = (2k − 1)!!

2kk!
= (2k)!

22k(k!)2
. (4.5)

5. Determination of the moments

In order to obtain recursion relations for the moments of the random variable X, we proceed in
two steps. We first compute the moments of t ′N−1/t

′
N , from which we deduce those of tN−1/tN .

The recursion relations for the
〈
Xk

〉
then emerge from (2.4). Equations (3.2) and (3.3) finally

determine the moments of M .

5.1. Moments of tN−1/tN

We first determine the probability density function of the joint variables t ′N−1 and t ′N . In Laplace
space, we have

f̂t ′N−1,t
′
N ,N

(s; u, v, n) =
〈

e−ut ′N−1 e−vt ′N

∫ t ′n+1

t ′n
dt ′ e−st ′

〉

=



ρ̂(s + u + v)n−1ρ̂(s + v)

1 − ρ̂(s)

s
(n � 1)

1 − ρ̂(s)

s
(n = 0).

Summing over n gives

L
t ′

〈
e−ut ′N−1 e−vt ′N

〉 = f̂t ′N−1,t
′
N
(s; u, v) =

∞∑
n=0

f̂t ′N−1,t
′
N ,N

(s; u, v, n)

= 1 − ρ̂(s)

s

(
1 +

ρ̂(s + v)

1 − ρ̂(s + u + v)

)
(5.1)

so that, in particular, f̂t ′N−1,t
′
N
(s; u = 0, v = 0) = 1/s.

The first moment of the random variable t ′N−1/t
′
N is obtained by considering

L
t ′

〈
t ′N−1

t ′N

〉
=

∫ ∞

0
dv

(
− d

du

)
u=0

L
t ′

〈
e−ut ′N−1 e−vt ′N

〉

= ρ̂(s)

s
+

1 − ρ̂(s)

s
ln(1 − ρ̂(s))

≈
s→0

1

s
+

ln s

2
√
s

which leads to 〈
t ′N−1

t ′N

〉
≈

t ′→∞
1 − ln t ′

2
√
πt ′

(5.2)

omitting the finite parts of the logarithms.
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This computation generalizes to higher-order moments, using the asymptotic form (2.1)
in (5.1). We have

L
t ′

〈 (
t ′N−1

t ′N

)k 〉
=

(∫ ∞

0
dv

)k (
− d

du

)k

u=0
L
t ′

〈
e−ut ′N−1 e−vt ′N

〉

≈
s→0

1

s
+ kh

(1/2)
k

ln s√
s

which leads to 〈 (
t ′N−1

t ′N

)k 〉
≈

t ′→∞
1 − kh

(1/2)
k

ln t ′√
πt ′

(5.3)

where h
(1/2)
k is given by equation (4.5). In particular, since h

(1/2)
1 = 1

2 , equation (5.2) is
recovered.

The result (5.3) can be extended to non-integer values of k. We thus have (see (3.4))

〈
�′
N

〉 = −
〈
ln

t ′N−1

t ′N

〉
= lim

k→0

〈
1 − (

t ′N−1/t
′
N

)k
k

〉
≈

t ′→∞
ln t ′√
πt ′

as limk→0 h
(1/2)
k = 1. Equation (5.3) can thus be rewritten as〈 (

t ′N−1

t ′N

)k 〉
≈

t ′→∞
1 − kh

(1/2)
k

〈
�′
N

〉
. (5.4)

As announced above, when t → ∞, the random variable t ′N−1/t
′
N converges to 1, in law.

The moments fk,t of tN−1/tN are obtained from (5.4) as

fk,t =
〈 (

tN−1

tN

)k 〉
=

〈 (
t ′N−1

t ′N

)k/2α 〉
≈

t ′→∞
1 − k

2α
h
(α)
k

〈
�′
N

〉
because h(k/2α, 1

2 ) = h(k, α) ≡ h
(α)
k . On the other hand,

�̄t = 〈�N 〉 = −
〈
ln

tN−1

tN

〉
= 1

2α

〈
�′
N

〉 ≈
t→∞

ln t√
π tα

hence finally

fk,t ≈
t→∞ 1 − kh

(α)
k �̄t . (5.5)

5.2. Moments of X

From the recursion relation (2.4), we have

〈
Xk

N

〉 =
〈(

1 − tN−1

tN
XN−1

)k〉
. (5.6)

In the long-time regime, there is an asymptotic decoupling of the variables XN−1 and tN−1/tN ,
so that it is legitimate to take XN → X, while keeping the leading time dependence of fk,t ,
given by (5.5). This procedure can be justified along the lines of [11]. Consider first the simple
situation α = 1

2 . The difference between unity and tN−1/tN , which gives rise to the result
(5.5), is proportional to the interval τN = tN − tN−1. This quantity has been shown in [11] to
be, asymptotically for large t , independent of tN , and distributed according to the a priori law
ρ(τ). A similar decoupling takes place asymptotically for generic α.
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Denoting the moments
〈
Xk

〉
by xk , we obtain

xk = B(fk,t xk) (5.7)

with x0 = f0,t = 1, and where we have introduced the notation B for the linear binomial
operator

B(xk) =
k∑

j=0

(
k

j

)
(−1)j xj . (5.8)

As shown in the appendix, equation (5.7) implies the following recursion relations,
according to the parity of k:

xk(1 + fk,t ) = B(xk(1 + fk,t )) (k odd) (5.9)

xk(1 − fk,t ) = −B(xk(1 − fk,t )) (k even). (5.10)

Using the expression (5.5) of fk,t , we obtain, in the limit t → ∞, where �̄t → 0,

xk = B(xk) (k odd) (5.11)

kh
(α)
k xk = −B(kh(α)k xk) (k even). (5.12)

These relations, which can be rewritten as

xk = 1

2

k−1∑
j=0

(
k

j

)
(−1)j xj (k odd) (5.13)

xk = − 1

2kh(α)k

k−1∑
j=0

(
k

j

)
(−1)j jh(α)j xj (k even) (5.14)

determine the stationary values of the xk recursively. We thus obtain

x1 = 1
2 x2 = h

(α)
1

4h(α)2

x3 = −1

4
+

3h(α)1

8h(α)2

x4 = −h
(α)
1 + 3h(α)3

8h(α)4

+
9h(α)1 h

(α)
3

16h(α)2 h
(α)
4

· · · .

5.3. Moments of M

For reasons similar to those exposed below equation (5.6), the random variables H and X

(defined in the limit t → ∞) are independent. Thus, by (3.2) we have

〈
ξk

〉 = h
(α)
k xk (5.15)

which, together with equation (3.1), leads to a determination of the even moments of the mean
magnetization M in terms of the xk:〈

Mk
〉 = 〈

(1 − 2ξ)k
〉 = B(2kh(α)k xk) (k even). (5.16)
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Thus, finally we obtain〈
M2

〉 = 1 − h
(α)
1〈

M4
〉 = 1 + 2h(α)3 − 3h(α)1 h

(α)
3

h
(α)
2〈

M6
〉 = 1 − 5h(α)1 − 10h(α)3 − 16h(α)5 +

h
(α)
1 (15h(α)3 + 20h(α)5 )

h
(α)
2

+
(10h(α)1 + 30h(α)3 )h

(α)

5

h
(α)
4

− 45h(α)1 h
(α)
3 h

(α)

5

h
(α)
2 h

(α)
4

(5.17)

and so on.
For instance, if α = 1

2 , corresponding to Brownian motion, the successive even moments
of M are equal to 1

2 , 3
8 , 5

16 , 35
128 , . . . , i.e.

〈
M2j

〉 = (2j)!

22j (j !)2
= h

(1/2)
j

which are the even moments of the arcsine law on [−1, 1] (see (7.2) below).

6. An integral equation for the determination of fM

The recursion relation (5.11) expresses a symmetry property of the distribution fX:

fX(x) = fX(1 − x) (6.1)

(see the appendix). This is also obvious from (3.1), since formally F = 1 in the present case.
The recursion relation (5.12), which can be rewritten as

k
〈
ξk

〉 = −B (
k

〈
ξk

〉)
(k even) (6.2)

expresses a symmetry property of the distribution fξ , as we now show. First, it is easy to prove
that

B (
k

〈
ξk

〉) = −k
〈
ξ(1 − ξ)k−1

〉
.

Therefore, equation (6.2) yields〈
ξk

〉 = 〈
ξ(1 − ξ)k−1

〉
(k even)

which is equivalent to the following symmetry property:

ξfξ (ξ) = (1 − ξ)fξ (1 − ξ) (6.3)

or

φ(ξ) = φ(1 − ξ) (6.4)

introducing the function

φ(ξ) = ξfξ (ξ). (6.5)

On the other hand, as a consequence of (3.2) and of the independence of H and X, the
distribution fξ is equal to the convolution of fH , given by (4.3), and of fX:

fξ (ξ) =
∫ 1

ξ

dx

x
fX(x)fH

(
ξ

x

)
= 2α

π
ξα−1

∫ 1

ξ

dx
fX(x)√
x2α − ξ 2α

(6.6)
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hence

φ(ξ) = 2α

π
ξα

∫ 1

ξ

dx
fX(x)√
x2α − ξ 2α

. (6.7)

In summary, two conditions determine the distribution fX(x): it obeys the symmetry
property (6.1), and the function φ(ξ), given by (6.7), obeys the symmetry property (6.4).

Once the probability density fX is known, fξ is given by (6.6). Finally, equations (3.3),
(6.5) and (6.4) imply

fM(m) = 1

1 − m2
φ

(
1 ± m

2

)
. (6.8)

We explore the consequences of this general set-up in the next three sections.

7. The case α = 1
2

This situation corresponds to Brownian motion. It is easy to check that the uniform distribution
on [0, 1],

fX(x) = 1 (7.1)

solves the problem. Indeed, equations (6.6) and (6.7) yield

φ(ξ) = 2

π

√
ξ(1 − ξ) fξ (ξ) = 2

π

√
1 − ξ

ξ

which satisfy (6.3) and (6.4). Finally, by (6.8), the limiting distribution of Mt is obtained:

fM(m) = 1

π
√

1 − m2
(7.2)

which is the arcsine law on [−1, 1].
All of these results can be derived by more direct means, using the fact that in the present

case the time intervals τ1, τ2, . . . between sign changes define a renewal process [11].

8. Local analysis in the persistence region

The persistence region is defined by the condition M → ±1, i.e. ξ → 0 or ξ → 1.
Considering (6.6) for ξ → 0 yields at once

fξ (ξ) ≈
ξ→0

2α

π

〈
X−α

〉
ξα−1 (8.1)

provided the average
〈
X−α

〉
is convergent (see the comment below equation (9.12)).

Consequently, using (6.5) and (6.8), we obtain

fM(m) ≈
m→±1

C(1 − m2)α−1 (8.2)

with

C = 21−2αα

π

〈
X−α

〉
. (8.3)
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The behaviour of the distribution fX(x) as x → 0 can be determined as well. Assuming
fX(x) ≈ Axγ (x → 0), and using (6.1), we obtain

φ(ξ) ≈
ξ→1

A

√
2α

π

∫ ξ̄

0
dx̄

x̄γ√
ξ̄ − x̄

= A

√
2α

π

((γ + 1)

(
(
γ + 3

2

) ξ̄ γ+1/2

with ξ̄ = 1 − ξ , x̄ = 1 − x. An identification with (8.1), using again (6.5) and (6.3), yields
the values of γ and A, hence

fX(x) ≈
x→0

√
2α

π

((α + 1)

(
(
α + 1

2

) 〈
X−α

〉
xα−1/2. (8.4)

Let us compare the singular behaviour (8.2) of fM in the persistence region with the beta
law on [−1, 1] of the same index:

f beta
M (m) = Cbeta(1 − m2)α−1 (8.5)

where

Cbeta = (
(
α + 1

2

)
√
π ((α)

. (8.6)

A measure of the difference between the two distributions is provided by the enhancement
factor

E = C

Cbeta
. (8.7)

For α = 1
2 , the distribution fM(m) is the arcsine law (7.2), which is a beta law.

Equation (7.1) yields
〈
X−1/2

〉 = 2, so that C = Cbeta = 1/π , and E = 1. The estimate
(8.4) also agrees with (7.1).

For α 
= 1
2 , the distribution fM(m) is no longer a beta law, so that the enhancement factor

E is non-trivial.

9. Asymptotic analysis for large values of α

For large values of α, the distributions fX(x), fξ (ξ) and fM(m) are expected to share, at least
qualitatively, some resemblance with the beta law (8.5). This observation suggests setting

fX(x) ∼
α�1

exp
(−αS(x)

)
(9.1)

with

S(x) = S(1 − x) (9.2)

as a consequence of (6.1). The function S(x) is expected to be regular, and positive, with a
minimum at S( 1

2 ) = 0, just as its counterpart

Sbeta(x) = − ln(4x(1 − x)) (9.3)

associated with the beta law (8.5).
With these hypotheses, φ(ξ), given by (6.7), can be estimated as follows. Setting x = ξ +ε

with ε � 1, we have fX(x) ≈ e−αS(ξ)−αεS ′(ξ) and x2α − ξ 2α ≈ ξ 2α(e2αε/ξ − 1). The change
of integration variable from x to z = 2αε/ξ yields

φ(ξ) ≈
α�1

P(ξ)fX(ξ) (9.4)
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with

P(ξ) = ξ

π

∫ ∞

0
dz

e−ξS ′(ξ)z/2

√
ez − 1

.

Setting y = e−z, and returning to the variable x, we finally obtain

P(x) = x√
π

(
(

1
2 + 1

2xS
′(x)

)
(

(
1 + 1

2xS
′(x)

) (9.5)

provided the arguments of both Gamma functions are positive (this will indeed be the case).
Note that (9.5) no longer involves the parameter α.

Omitting again pre-exponential factors, equation (9.4) implies

fM(m) ∼
α�1

exp

(
−αS

(
1 ± m

2

))
. (9.6)

In the regime of large α, the three distributions of interest are therefore given by a single
function S(x). The problem then amounts to finding S(x), with the symmetry property (9.2),
and such that the corresponding function P(x), given by (9.5), obeys

P(x) = P(1 − x) (9.7)

as a consequence of (6.4). The function S(x) is entirely determined by the above conditions.
This property is more evident in the present regime than in the general case of section 6,
because (9.5) is explicit, while (6.7) is an integral relationship.

Let us first investigate the behaviour of S(x) for x → 1
2 , i.e. m → 0, corresponding to the

centre of the distributions. Inserting the expansion

S(x) = c2
(
x − 1

2

)2
+ c4

(
x − 1

2

)4
+ · · ·

in (9.5), (9.7), and expanding the Gamma functions accordingly, we obtain

c2 = 2

ln 2
c4 = 4

3 ln 2
+

π2

3(ln 2)3
− ζ(3)

(ln 2)4
. . . (9.8)

and

P(x) = 1
2 +

(
π2

12(ln 2)2
− 3

) (
x − 1

2

)2
+ · · · .

To leading order, keeping only the quadratic term in S(x), we find that the bulk of the
distributions are given asymptotically by narrow Gaussians for α large, namely

fX(x) ∼
α�1

fξ (x) ∼
α�1

exp

(
− 2α

ln 2

(
x − 1

2

)2
)

fM(m) ∼
α�1

exp
(
− α

2 ln 2
m2

)
.

The latter result is in agreement with the expressions (5.17) of the moments of M , which
behave as

〈
M2

〉 ≈ (ln 2)/α,
〈
M4

〉 ≈ 3(ln 2)2/α2, and so on, for α � 1.
It is also worthwhile noticing that the beta law (8.5) and (9.3) also becomes a narrow

Gaussian for α large. We have Sbeta(x) ≈ 4(x − 1
2 )

2 and f beta
M (m) ≈ e−αm2

, so that the beta
law misses a finite factor 2 ln 2 ≈ 1.3862 in the variance of the mean magnetization.

The expression (9.8) of the subleading amplitude c4, involving Riemann’s zeta function,
shows, however, that the function S(x) is altogether non-trivial.

Let us now turn to the behaviour of S(x) deep in the tails of the distributions, i.e. for
x → 0 or 1, or m → ±1, corresponding to the persistence region. The general result (8.2)
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Figure 1. Plot of the function S(x) characterizing the limiting distributions of the variables X and
ξ and of the mean magnetization M in the large-α region, against x (full curve), compared with
the function Sbeta(x) associated with the beta law (broken curve).

shows that S(x) ≈ − ln x has a logarithmic divergence as x → 0. Consequently, the Gamma
function in the numerator of expression (9.5) for P(x) becomes singular, as its argument goes
to zero. Furthermore, in the same expression for P(1 − x), the arguments of both Gamma
functions tend to infinity. A careful treatment of (9.5) yields the more complete expansions as
x → 0,

S(x) = − ln x + S0 + 2

√
2x

π
+ · · · P(x) =

√
2x

π
+ · · · (9.9)

while the constant S0 cannot be predicted by this local analysis. The square-root behaviour of
P(x) and its prefactor agree with the general results (8.1) and (8.4).

We have determined numerically the solution of (9.5) and (9.7) over the whole range
0 < x < 1

2 , thus obtaining accurate values of S(x). This approach yields, in particular,
S0 ≈ −2.0410. Figure 1 shows a plot of the function S(x) thus obtained, compared with
Sbeta(x).

As the amplitudeCbeta of the beta law (8.5) remains of the order of unity, within exponential
accuracy, the result (9.9) for S(x) implies that the amplitude C of the power law (8.2) in the
persistence region, and the enhancement factor E defined in (8.7), blow up exponentially, as

C ∼
α�1

E ∼
α�1

exp(Gα) (9.10)

with

G = lim
x→0

(Sbeta(x) − S(x)) = −S0 − 2 ln 2 ≈ 0.6547. (9.11)

In order to test the relevance of this large-α approach, we have evaluated E numerically
for various values of the parameter α, and compared the results with the exponential law (9.10)
predicted for large α. The computation of E can be done in (at least) two different ways.

The first method consists in directly evaluating the limit

E = lim
n→∞

〈
M2n

〉
〈
M2n

〉beta
.
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The moments of the beta law (8.5) read

〈
M2n

〉beta = (
(
α + 1

2

)
(

(
n + 1

2

)
√
π (

(
n + α + 1

2

)
while the true moments

〈
M2n

〉
are determined from (5.13), (5.14) and (5.16), up to some

maximal order, typically nmax = 100–150, beyond which the numerical accuracy rapidly
deteriorates, because the computation of

〈
M2n

〉
involves alternating sums.

The second method consists in combining (8.3) and (8.6), thus giving

E = 21−2α

√
π

((α + 1)

(
(
α + 1

2

) 〈
X−α

〉

and in evaluating
〈
X−α

〉
as

〈
X−α

〉 = 〈
(1 − X)−α

〉 = 1

((α)

∞∑
n=0

((n + α)

n!
xn. (9.12)

The behaviour (8.4) implies that the xn decay as n−α−1/2, so that the term of order n in the
above sum decays as n−3/2. Hence this sum is convergent, and truncating it at some order nmax

brings a correction proportional to n−1/2
max . The xn are again determined from (5.13) and (5.14).

A linear extrapolation in n
−1/2
max of the results of both schemes turns out to yield consistent

results. We have, for instance, E ≈ 1.443 for α = 1.
Figure 2 shows our numerical results for the enhancement factor E, for values of α up

to 3. The comparison with the exponential law (9.10) is convincing, in spite of the moderate
values of α used.

Figure 2. Logarithmic plot of the enhancement factor E in the persistence region, against α,
evaluated numerically as described in the text (symbols). The straight line has the theoretical slope
G of (9.11).
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10. Revisiting the work of Dhar and Majumdar

10.1. Using the method of section 3.2

Let us first show that the expressions (5.17) for the even moments of M are the same as those
obtained by using (3.9), with the expression of Â(s) appropriate to the process (1.1), as done
in [4].

The autocorrelation A(|�T |) = 〈σT σT +�T 〉 of the sign process σt in the logarithmic time
scale T = ln t reads A(T ) = (2/π) arcsin(e−α|T |) [4], with the Laplace transform

Â(s) = 1

s

[
1 − 1

π
B

(
s

2α
+

1

2
,

1

2

)]
. (10.1)

We note that Â(s) is related to h(s, α), defined in (4.4), by

h(s, α) = 1 − sÂ(s) (10.2)

where the right-hand side is equal to 2g(s)/s by (3.6). Using this identity, it is easy to check
that the moments (3.9) obtained by the method of section 3.2, with Âk given by (10.1) for
s = k integer, are identical to the moments (5.17) obtained by the method of this paper.

It is, however, not possible to identify the intermediate results of both methods, as can be
seen by comparing, respectively, equation (5.5) to equations (3.7) and (3.5), and equation (4.4)
to equation (3.8). This demonstrates the formal character of the application of the method of
section 3.2 to the process (1.1). (See also the discussion in section 3.3.)

10.2. Comments on the results obtained using Kac’s formalism

A first comment is that the recursion relations for the coefficients ck appearing in equations (14)
of [4] can be easily recognized to be identical to the recursion relations (5.13) and (5.14) for
xk , by noting the correspondences

ck = 2k

k!D−k/α(0)
xk

D−k/α+1(0)

D−k/α(0)
=

√
2π

α

kh
(α)
k

2
.

(10.3)

The second comment concerns the continuity conditions expressed in equations (13) of
[4]. Using (10.3), these conditions yield, with the notation of this paper,〈

ea(2X−1)
〉 = 〈

ea(1−2X)
〉

〈
ξea(2ξ−1)

〉 = 〈
ξea(1−2ξ)

〉
.

These equations hold for a arbitrary, hence they are equivalent to (6.1) and (6.3), respectively.

11. Summary and discussion

In this paper we have revisited and extended the work of Dhar and Majumdar [4]. Besides
providing a new recursive determination of the moments of the mean magnetization M , the
present study leads to a functional integral equation for the distribution of the latter quantity.
This framework allows a local analysis of this distribution, and of other relevant quantities, in
the persistence region (Mt → ±1), as well as a detailed investigation of the regime where α
is large.
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This paper casts new light on the status of the expressions (3.9) for the moments of M .
The method recalled in section 3.2, which leads to these relations, can be applied to any
smooth process for which the intervals of time �N between sign changes are independent, on
a logarithmic scale. For this class of processes 〈�N 〉 = �̄ is finite (i.e. non-zero), and the mean
number of sign changes between 0 and t scales as 〈Nt 〉 ≈ (ln t)/�̄.

Relations (3.9) are also verified for the class of processes considered in this work. This
was observed in [4] (by comparing the expressions thus found with those obtained by another
method, based on a formalism due to Kac), and justified by the absence of �̄ in equations (3.9).
Yet, as discussed in section 3.3, in the present case there is no obvious reason to work with
a logarithmic time scale, since 〈�N 〉 vanishes asymptotically, and the mean number of sign
changes scales as 〈Nt 〉 ≈ 2π−1/2tα [11]. (See also the discussion in section 10.1.)

Most of the effort of this paper was to provide a new derivation of (3.9) for the class
of processes (1.1). Our approach relies on the fact that the time intervals τ ′

n between two
sign changes of the process (1.1) form a renewal process (the τ ′

n are independent, identically
distributed random variables). The derivation proceeds in two steps. First, relations (5.17)
for the 〈Mk〉 are obtained; then, using (10.2), equations (5.17) yield (3.9). This extends the
range of applicability of relations (3.9). Note that for diffusion (in the independent-interval
approximation) (see section 3.2), relations (3.9) hold but neither (5.17) nor (10.2) do.

We conclude by making a few additional comments.
In passing, let us mention another equivalent formulation of (10.2), namely that the two-

time autocorrelation of the sign process reads, with t < t ′,

C(t, t ′) =
∫ t/t ′

0
dx fH (x). (11.1)

Another situation where (3.9), (5.17) and (10.2) or (11.1) hold is for the renewal processes
considered in [11] (provided θ < 1), which are yet another deformation of Brownian motion.

Note that the first relation of (3.9), 〈M2〉 = Â1, holds whenever the two-time
autocorrelation function is a scaling function of the ratio of the two times [5], while the
first relation of (5.17), 〈M2〉 = 1−〈H 〉, does not hold in general. For instance, for the random
acceleration problem, using results of [20], we find 〈M2〉 = 3

√
3/π − 1 ≈ 0.653 986 and

1 − 〈H 〉 ≈ 0.791 335.
This work also underlines the importance of the random variables X and H . The

distribution of the latter is known exactly in the present case. This quantity, which is a natural
one to consider for Brownian motion [1], and more generally for renewal processes [11], also
appears in the context of phase ordering [21].

As mentioned in the introduction, the process (1.1) has been proposed [2] as a Markovian
approximation to fractional Brownian motion. Let us compare the expressions of 〈M2〉 for
these two processes. For the present model we have (see (5.17))

〈M2〉 = 1 − 1√
π

(
(

1
2α + 1

2

)
(

(
1

2α + 1
) (11.2)

while for fractional Brownian motion, with Hölder index 0 < h < 1, we have

〈M2〉 = 2

π

∫ 1

0
dx arcsin

x2h + 1 − (1 − x)2h

2xh
. (11.3)

The correspondence between the two processes is made by identifying their persistence
exponents: θ = α = 1 − h. For θ = 1

2 , we have 〈M2〉 = 1
2 in both cases. For θ = 1,

(11.2) yields 〈M2〉 = 1 − 2/π ≈ 0.363 380, while (11.3) yields 〈M2〉 = 1
3 . For θ → 0, we



Statistics of the occupation time for a class of Gaussian Markov processes 1265

have 〈M2〉 = 1 − c
√
θ , with (11.2) yielding c = √

2/π ≈ 0.797 885, and (11.3) yielding
c ≈ 0.812 233. The distributions of the mean magnetization for the two processes are therefore
expected to be rather similar (for 0 < θ < 1).

Finally, let us comment on the changes in behaviour induced by letting the persistence
exponent α vary, and compare the present process with other ones in this respect. The
distribution of M shows a change in shape as α increases, the most probable value of the
mean magnetization shifting from the edges to the centre [4]. More precisely, as shown in
section 8, as long as α < 1, fM(m) diverges at m → ±1, while for α > 1 it vanishes at
these points (see equation (8.2)). However, for any arbitrary value of α the magnetization M

remains distributed.
This behaviour is actually generic, whenever the two-time autocorrelation function of the

process is asymptotically a function of the ratio of the two-time variables [5]. In particular,
this is so for diffusion. In the independent-interval approximation the persistence exponent
θ(D) ≈ 0.1454

√
D increases without bound when the dimension of space D is large [18, 19].

As originally noted in [5], as long as θ < 1 the density fM(m) diverges at the edges, while it
vanishes there if θ > 1. This was also emphasized in [9], on the basis of scaling arguments,
and was recently confirmed by direct numerical computations [22].

In contrast, there are other processes for which the change in behaviour at θ = 1 is more
radical. For fractional Brownian motion, θ = 1 appears as a maximum persistence exponent.
For the renewal processes considered in [11], the mean magnetization possesses a non-trivial
asymptotic distribution only if θ < 1.

Appendix. Properties of the binomial operator B

The aim of this appendix is to prove the following property, used in section 5.2. Assume that
the sequence xk satisfies

xk = B(fkxk) (A.1)

with x0 = f0 = 1, and where B(xk) = ∑k
j=0

(
k

j

)
(−1)j xj (see (5.8)). Then

xk(1 + fk) = B(xk(1 + fk)) (k odd) (A.2)

xk(1 − fk) = −B(xk(1 − fk)) (k even) (A.3)

which are, respectively, equations (5.9) and (5.10) in the text.

A.1. Basic properties

In order to prove (A.2) and (A.3) we need the following auxiliary properties.
First, B is its own inverse:

B = B−1. (A.4)

A combinatorial proof of this result can be found in [23]. An alternative proof is obtained by
noting that the action of B on exponential sequences xk = yk reads

B(yk) = (1 − y)k. (A.5)

This relation is invariant in the change of y to 1 − y, hence (A.4) follows.
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Then, we have the properties

xk = B(xk) for k even implies xk = B(xk) for all k (A.6)

xk = B(xk) for k odd implies xk = B(xk) for all k (A.7)

xk = −B(xk) for k even implies xk = −B(xk) for all k (A.8)

xk = −B(xk) for k odd implies xk = −B(xk) for all k. (A.9)

Before giving the proofs, let us make explicit the meaning of (A.6)–(A.9).
Let us take the example of (A.6). By hypothesis, the sequence xk satisfies the condition

xk = B(xk) for k even, with x0 arbitrary, which is equivalent to saying that

k−1∑
j=0

(
k

j

)
(−1)j xj = 0 (k even). (A.10)

This recursion determines xk for k odd in terms of the x� with � = 0, . . . , k − 1 even:

x1 = 1
2x0 x3 = 3

2x2 − 1
4x0 x5 = 5

2x4 − 5
2x2 + 1

2x0 . . . .

The property (A.6) states that xk = B(xk) for k odd, or equivalently,

2xk =
k−1∑
j=0

(
k

j

)
(−1)j xj (k odd)

which provides an infinite number of consistency relations amongst the xk satisfying (A.10).
Similarly, taking the example of (A.8), by hypothesis we have xk = −B(xk) for k even,

with x0 = 0, which is equivalent to

2xk = −
k−1∑
j=0

(
k

j

)
(−1)j xj (k even). (A.11)

This recursion determines xk for k even in terms of the x� with � = 1, . . . , k − 1 odd:

x2 = x1 x4 = 2x3 − x1 x6 = 3x5 − 5x3 + 3x1 . . . .

The property (A.8) states that xk = −B(xk) for k odd, or equivalently,

k−1∑
j=0

(
k

j

)
(−1)j xj = 0 (k odd)

which provides an infinite number of consistency relations amongst the xk satisfying (A.11).
We now prove the properties (A.6)–(A.9). In order to do so, let us define, for a given

sequence xk , the Laurent series

F(z) =
∞∑
k=0

xkz
−k G(z) =

∞∑
k=0

B(xk)z−k.

We assume that these series are convergent for |z| larger than some radius R. This happens,
for example, if the xk are bounded.

The functions F(z) and G(z) are related to each other by

F(z) = z

z − 1
G(1 − z) (A.12)

G(z) = z

z − 1
F(1 − z) (A.13)
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as we now show. We have

xk =
∮

dy

2π iy
ykF (y)

hence, using (A.5),

B(xk) =
∮

dy

2π iy
(1 − y)kF (y)

so that

G(z) =
∮

dy

2π iy

z

y + z − 1
F(y).

This integral is equal to the contribution of the pole at y = 1 − z, yielding (A.13), from which
(A.12) follows. The symmetric form of the formulae (A.12) and (A.13) is due to the property
(A.4).

Proof of (A.6) and (A.7). The hypothesis in (A.6) implies F(z) + F(−z) = G(z) + G(−z),
i.e.

:(z) = −:(−z) (A.14)

with, using (A.13),

:(z) = F(z) − G(z) = F(z) − z

z − 1
F(1 − z).

Therefore, (z − 1):(z) + z:(1 − z) = 0, which can be rewritten, using (A.14), as

:(z)

z
= :(z − 1)

z − 1
.

The function :(z)/z is thus periodic, with unit period, and decaying at infinity, as we have
:(z)/z ≈ (x0 −2x1)/z

2 a priori. We conclude that:(z) = 0 identically, that isF(z) = G(z),
implying the property (A.6).

For the case where the xk = 〈
Xk

〉
are the moments of a random variable X, with density

fX on [0, 1], an alternative proof of (A.6) is as follows. The hypothesis in (A.6) expresses the
property 〈

Xk
〉 = 〈

(1 − X)k
〉

(k even).

As both random variables X and 1 − X are positive, this last condition is sufficient to imply
fX(x) = fX(1 − x), hence

〈
Xk

〉 = 〈
(1 − X)k

〉
for all k, which proves (A.6).

The proof of the second property, (A.7), is very similar. The hypothesis in (A.7) implies

:(z)

z
= −:(z − 1)

z − 1
.

The function :(z)/z is therefore periodic, with period two, and decaying at infinity, hence
:(z) = 0 identically. �

Proof of (A.8) and (A.9). The hypothesis in (A.8) impliesF(z)+F(−z) = −(G(z)+G(−z)),
i.e.

;(z) = −;(−z) (A.15)
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with, using (A.13),

;(z) = F(z) + G(z) = F(z) +
z

z − 1
F(1 − z).

Therefore, (z − 1);(z) − z;(1 − z) = 0, which can be rewritten, using (A.15), as

;(z)

z
= −;(z − 1)

z − 1
.

The function ;(z)/z is thus again periodic, with period two, and decaying at infinity, hence
identically zero. The proof of the fourth property, (A.9), is very similar. �

A.2. Proofs of equations (A.2) and (A.3)

Equation (A.1) implies the relations

xk(1 + fk) =
k−1∑
j=0

(
k

j

)
(−1)jfjxj (k odd) (A.16)

xk(1 − fk) =
k−1∑
j=0

(
k

j

)
(−1)jfjxj (k even) (A.17)

which determines the xk recursively. We have thus

x1 = 1

1 + f1
x2 = 1 − f1

(1 + f1)(1 − f2)
· · · . (A.18)

Since the operator B is its own inverse, (A.1) is equivalent to fkxk = B(xk), which itself
implies

xk(1 + fk) =
k−1∑
j=0

(
k

j

)
(−1)j xj (k odd) (A.19)

xk(fk − 1) =
k−1∑
j=0

(
k

j

)
(−1)j xj (k even). (A.20)

Comparing (A.16) and (A.19) shows that

k−1∑
j=0

(
k

j

)
(−1)j xj (1 − fj ) = 0 (k odd)

hence, using the property (A.9),

xk(1 − fk) = −B(xk(1 − fk)) (k even)

which is equation (A.3). Similarly, comparing (A.17) and (A.20) shows that

k−1∑
j=0

(
k

j

)
(−1)j xj (1 + fj ) = 0 (k even)

or, using the property (A.6),

xk(1 + fk) = B(xk(1 + fk)) (k odd)

which is equation (A.2).
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